Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (12): 1365-1376.doi: 10.3724/SP.J.1041.2020.01365
• Reports of Empirical Studies • Next Articles
CHEN Jiejia, ZHOU Yi, CHEN Jie()
Received:
2020-06-14
Published:
2020-12-25
Online:
2020-10-27
Contact:
CHEN Jie
E-mail:xlxchen@163.com
Supported by:
CHEN Jiejia, ZHOU Yi, CHEN Jie. (2020). The relationship between musical training and inhibitory control: An ERPs study. Acta Psychologica Sinica, 52(12), 1365-1376.
Serial number | Age (years) | Socioeconomic status | Intelligence | Age at onset of training (years) | Length of training (years) | Musical Instrument (the first is the major musical instrument) | Weekly practice time (hours) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | / | 8 | / | Violin, Guitar | / | 18 | / |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | / | 8 | / | Zither, Piano, Ocarina | / | 5 | / |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | / | 8 | / | Piano | / | 6 | / |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | / | 15 | / | Violin, Piano | / | 9 | / |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | / | 12 | / | Piano, Violin | / | 14 | / |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | / | 8 | / | Piano | / | 10 | / |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | / | 8 | / | Zither, Piano, Accordion | / | 5 | / |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | / | 14 | / | Piano | / | 13 | / |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | / | 15 | / | Piano | / | 16 | / |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | / | 11 | / | Zither, Piano | / | 12 | / |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | / | 8 | / | Piano | / | 10 | / |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | / | 9 | / | Cello | / | 9 | / |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | / | 14 | / | Viola, Violin, Guitar | / | 8 | / |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | / | 13 | / | Piano | / | 11 | / |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | / | 10 | / | Violin | / | 10 | / |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | / | 12 | / | Piano, Dulcimer | / | 15 | / |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | / | 14 | / | Piano | / | 12 | / |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | / | 8 | / | Zither, Piano, Dulcimer, Cello | / | 13 | / |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | / | 8 | / | Sheng, Piano, Cucurbit flute, Suona, Xiao | / | 10 | / |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | / | 12 | / | Piano | / | 8 | / |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | / | 10 | / | Violin, Viola, Piano | / | 6 | / |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | / | 13 | / | Piano | / | 10 | / |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | / | 12 | / | Violin, Piano | / | 5 | / |
Table 1 Demographic data
Serial number | Age (years) | Socioeconomic status | Intelligence | Age at onset of training (years) | Length of training (years) | Musical Instrument (the first is the major musical instrument) | Weekly practice time (hours) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | / | 8 | / | Violin, Guitar | / | 18 | / |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | / | 8 | / | Zither, Piano, Ocarina | / | 5 | / |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | / | 8 | / | Piano | / | 6 | / |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | / | 15 | / | Violin, Piano | / | 9 | / |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | / | 12 | / | Piano, Violin | / | 14 | / |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | / | 8 | / | Piano | / | 10 | / |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | / | 8 | / | Zither, Piano, Accordion | / | 5 | / |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | / | 14 | / | Piano | / | 13 | / |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | / | 15 | / | Piano | / | 16 | / |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | / | 11 | / | Zither, Piano | / | 12 | / |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | / | 8 | / | Piano | / | 10 | / |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | / | 9 | / | Cello | / | 9 | / |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | / | 14 | / | Viola, Violin, Guitar | / | 8 | / |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | / | 13 | / | Piano | / | 11 | / |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | / | 10 | / | Violin | / | 10 | / |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | / | 12 | / | Piano, Dulcimer | / | 15 | / |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | / | 14 | / | Piano | / | 12 | / |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | / | 8 | / | Zither, Piano, Dulcimer, Cello | / | 13 | / |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | / | 8 | / | Sheng, Piano, Cucurbit flute, Suona, Xiao | / | 10 | / |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | / | 12 | / | Piano | / | 8 | / |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | / | 10 | / | Violin, Viola, Piano | / | 6 | / |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | / | 13 | / | Piano | / | 10 | / |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | / | 12 | / | Violin, Piano | / | 5 | / |
Figure 1. Behavioral performance of music group and control group in the Go/No-go and Stroop tasks. (a) Go/No-go perceptual sensitivity (d ') = z(No-go hit rate) - z(Go false alarm rate); (b) The Stroop interference effect of response time = the reaction time of incongruent condition minus that of congruent condition, the Stroop interference effect of accuracy = the accuracy of the congruent condition minus that of the incongruent condition. Note. n.s. = non-significant, * p < 0.05.
Figure 2. (a) Averaged ERPs at the Fz for No-go and Go conditions in both music and control groups; (b) Topographic maps of N2 for No-go and Go conditions in both groups; (c) Averaged ERPs at the Fz for the difference N2 (No-go minus Go conditions) in both groups; (d) Topographic maps of the difference N2 (No-go minus Go conditions) in both groups.
Inhibitory control | Control group M (SD) | Music group M (SD) | F (1,44) | p |
---|---|---|---|---|
Go/No-go | ||||
Behavior | ||||
Go accuracy | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go accuracy | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
Behavior | ||||
Congruent accuracy | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
Incongruent accuracy | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
Congruent reaction time | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
Incongruent reaction time | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
Congruent N450 | 1.20 (3.00) | 4.13 (5.13) | 5.62 | 0.022* |
Incongruent N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
Congruent SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
Incongruent SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
Table 2 The accuracies (%), response times (ms), and ERP amplitudes (μv) of the music and control groups in the Go/No-go and Stroop tasks
Inhibitory control | Control group M (SD) | Music group M (SD) | F (1,44) | p |
---|---|---|---|---|
Go/No-go | ||||
Behavior | ||||
Go accuracy | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go accuracy | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
Behavior | ||||
Congruent accuracy | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
Incongruent accuracy | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
Congruent reaction time | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
Incongruent reaction time | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
Congruent N450 | 1.20 (3.00) | 4.13 (5.13) | 5.62 | 0.022* |
Incongruent N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
Congruent SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
Incongruent SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
Figure 3. (a) Averaged ERPs at the Cz for No-go and Go conditions in both music and control groups; (b) Topographic maps of P3 for No-go and Go conditions in both groups; (c) Averaged ERPs at the Cz for the difference P3 (No-go minus Go conditions) in both groups; (d) Topographic maps of the difference P3 (No-go minus Go conditions) in both groups.
Figure 4. (a) Averaged ERPs at the FCz for congruent and incongruent conditions in both music and control groups; (b) Topographic maps of N450 for congruent and incongruent conditions in both groups; (c) Averaged ERPs at the FCz for the difference N450 (incongruent minus congruent conditions) in both groups; (d) Topographic maps of the difference N450 (incongruent minus congruent conditions) in both groups.
Figure 5. (a) Averaged ERPs at the Pz for congruent and incongruent conditions in both music and control groups; (b) Topographic maps of SP for congruent and incongruent conditions in both groups; (c) Averaged ERPs at the Pz for the difference SP (incongruent minus congruent conditions) in both groups; (d) Topographic maps of the difference SP (incongruent minus congruent conditions) in both groups.
[1] | Arthur, W., & Day, D. V. (1994). Development of a short form for the raven advanced progressive matrices test. Educational & Psychological Measurement, 54(2), 394-403. |
[2] |
Badzakova-Trajkov, G., Barnett, K. J., Waldie, K. E., & Kirk, I. J. (2009). An ERP investigation of the Stroop task: The role of the cingulate in attentional allocation and conflict resolution. Brain Research, 1253, 139-148.
doi: 10.1016/j.brainres.2008.11.069 URL |
[3] |
Baumeister, S., Hohmann, S., Wolf, I., Plichta, M. M., Rechtsteiner, S., Zangl, M., ... Brandeis, D. (2014). Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage, 94, 349-359.
doi: 10.1016/j.neuroimage.2014.01.023 URL |
[4] |
Bialystok, E., & Depape, A.-M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565-574.
URL pmid: 19331508 |
[5] |
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1-38.
URL pmid: 18400922 |
[6] | Carter, C. S., & van, Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive Affective & Behavioral Neuroscience, 7(4), 367-379. |
[7] |
Chen, J., Liu, L., Wang, R., & Shen, H. Z. (2017). The effect of musical training on executive functions. Advances in Psychological Science, 25(11), 1854-1864.
doi: 10.3724/SP.J.1042.2017.01854 URL |
[8] |
Cheng, K. S., Chang, Y. F., Han, R. P. S., & Lee, P. F. (2017). Enhanced conflict monitoring via a short-duration, video-assisted deep breathing in healthy young adults: An event-related potential approach through the Go/NoGo paradigm. PeerJ, 5, e3857.
URL pmid: 29018605 |
[9] |
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222.
URL pmid: 23641225 |
[10] |
Di Russo, F., Taddei, F., Apnile, T., & Spinelli, D. (2006). Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neuroscience Letters, 408(2), 113-118.
URL pmid: 17018246 |
[11] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
doi: 10.1146/annurev-psych-113011-143750 URL |
[12] |
Donkers, F. C. L., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165-176.
doi: 10.1016/j.bandc.2004.04.005 URL |
[13] |
Enriquez-Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage, 51(2), 877-887.
doi: 10.1016/j.neuroimage.2010.02.043 URL |
[14] |
Fauvel, B., Groussard, M., Chételat, G., Fouquet, M., Landeau, B., Eustache, F., ... Platel, H. (2014). Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage, 90, 179-188.
doi: 10.1016/j.neuroimage.2013.12.065 URL |
[15] |
Gajewski, P. D., & Falkenstein, M. (2015). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and Cognition, 98, 87-101.
URL pmid: 26160263 |
[16] |
Gao, Q. F., Jia, G., Zhao, J., & Zhang, D. D. (2019). Inhibitory Control in Excessive Social Networking Users: Evidence From an Event-Related Potential-Based Go-Nogo Task. Frontiers in Psychology, 10, 1810.
doi: 10.3389/fpsyg.2019.01810 URL |
[17] |
Guan, M., Liao, Y., Ren, H., Wang, X., Yang, Q., Liu, X., & Wang, W. (2015). Impaired response inhibition in juvenile delinquents with antisocial personality characteristics: A preliminary ERP study in a Go/Nogo task. Neuroscience Letters, 603, 1-5.
doi: 10.1016/j.neulet.2015.06.062 URL |
[18] |
Holmes, A. J., & Pizzagalli, D. A. (2008). Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia, 46(12), 2904-2913.
doi: 10.1016/j.neuropsychologia.2008.05.028 URL |
[19] |
James, C. E., Oechslin, M. S., van de Ville, D., Hauert, C. A., Descloux, C., & Lazeyras, F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219(1), 353-366.
doi: 10.1007/s00429-013-0504-z URL |
[20] |
Jaschke, A. C., Honing, H., & Scherder, E. J. A. (2018). Longitudinal Analysis of Music Education on Executive Functions in Primary School Children. Frontiers in Neuroscience, 12, 103.
doi: 10.3389/fnins.2018.00103 URL |
[21] |
Jonkman, L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood; a Go/Nogo ERP study. Brain Research, 1097(1), 181-193.
doi: 10.1016/j.brainres.2006.04.064 URL |
[22] |
Joret, M.-E., Germeys, F., & Gidron, Y. (2016). Cognitive inhibitory control in children following early childhood music education. Musicae Scientiae, 21(3), 303-315.
doi: 10.1177/1029864916655477 URL |
[23] |
Lansbergen, M. M., van Hell, E., & Kenemans, J. L. (2007). Impulsivity and conflict in the Stroop task: An ERP study. Journal of Psychophysiology, 21(1), 33-50.
doi: 10.1027/0269-8803.21.1.33 URL |
[24] |
Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297.
doi: 10.1016/j.ijpsycho.2014.06.007 URL |
[25] |
Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47(3), 663-670.
doi: 10.1016/j.neuropsychologia.2008.11.013 URL |
[26] | Li, C. S., Morgan, P. T., Matuskey, D., Abdelghany, O., Luo, X., Chang, J. L., …Malison, R. (2010). Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proceedings of the National Academy of Sciences, USA, 107( 32), 14455-14459. |
[27] |
Liu, P. D., Yang, W. J., Tian, X., & Chen, A.T. (2017). An Overview of Current Studies about the Conflict Adaptation Effect. Advances in Psychological Science, 20(4), 532-541.
doi: 10.3724/SP.J.1042.2012.00532 URL |
[28] |
MacLeod, C. M. (1991). Half a Century of Research on the Stroop Effect: An Integrative Review. Psychological Bulletin, 109(2), 163-203.
URL pmid: 2034749 |
[29] |
McNeely, H. E., West, R., Christensen, B. K., & Alain, C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 679-688.
doi: 10.1037/0021-843X.112.4.679 URL |
[30] |
Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-Term Music Training Enhances Verbal Intelligence and Executive Function. Psychological Science, 22(11), 1425-1433.
URL pmid: 21969312 |
[31] |
Moreno, S., Wodniecka, Z., Tays, W., Alain, C., & Bialystok, E. (2014). Inhibitory control in bilinguals and musicians: Event related potential (ERP) evidence for experience- specific effects. PLOS ONE, 9(4), e94169.
URL pmid: 24743321 |
[32] |
Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O'Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453-459.
doi: 10.1016/j.tics.2011.07.011 URL |
[33] | Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26. |
[34] | Okada, B. M. (2016). Musical training and executive functions (Unpublised master’s thesis). University of Maryland, College Park. |
[35] | Okada, B. M., & Slevc, L. R. (2017). Music training: Contributions to Executive Function. In M. F. Bunting, J. M. Novick, M. R. Dougherty, & R. W. Engle (Eds.), An Integrative Approach to Cognitive and Working Memory Training: Perspectives from Psychology, Neuroscience, and Human Development (pp. 1-16). New York, NY: Oxford University Press. |
[36] |
Pandey, A. K., Kamarajan, C., Tang, Y., Chorlian, D. B., Roopesh, B. N., Manz, N., ... Porjesz, B. (2012). Neurocognitive deficits in male alcoholics: An ERP/ sLORETA analysis of the N2 component in an equal probability Go/NoGo task. Biological Psychology, 89(1), 170-182.
doi: 10.1016/j.biopsycho.2011.10.009 URL |
[37] |
Pliszka, S. R., Liotti, M., Bailey, B. Y., Perez III, R., Glahn, D., & Semrud-Clikeman, M. (2007). Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. Journal of Child & Adolescent Psychopharmacology, 17(3), 356-366.
URL pmid: 17630869 |
[38] |
Sachs, M., Kaplan, J., der Sarkissian, A., & Habibi, A. (2017). Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLoS One, 12(10), e0187254.
doi: 10.1371/journal.pone.0187254 URL |
[39] |
Seinfeld, S., Figueroa, H., Ortiz-Gil, J., & Sanchez-Vives, M. V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Frontiers in Psychology, 4, 810.
URL pmid: 24198804 |
[40] |
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks, demonstrating that fMRI activation associated with response inhibition is task- dependent. Neuropsychologia, 46(1), 224-232.
doi: 10.1016/j.neuropsychologia.2007.07.015 URL |
[41] |
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199-211.
doi: 10.1016/j.cognition.2016.03.017 URL pmid: 27107499 |
[42] |
Smith, J. L., Jamadar, S., Provost, A. L., & Michie, P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87(3), 244-253.
doi: 10.1016/j.ijpsycho.2012.07.185 URL pmid: 22885679 |
[43] |
Smith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119(3), 704-714.
URL pmid: 18164657 |
[44] |
Smith, J. L., Smith, E. A., Provost, A. L., & Heathcote, A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task. International Journal of Psychophysiology, 75(3), 217-226.
URL pmid: 19951723 |
[45] |
Travis, F., Harung, H. S., & Lagrosen, Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a Unified Theory of Performance. Consciousness and Cognition, 20(4), 1256-1264.
doi: 10.1016/j.concog.2011.03.020 URL pmid: 21507681 |
[46] |
West, R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16(1), 103-113.
URL pmid: 15006040 |
[47] |
West, R., & Alain, C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the stroop task. Brain Research, 873(1), 102-111.
URL pmid: 10915815 |
[48] |
West, R., & Alain, C. (2000b). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189.
URL pmid: 10731768 |
[49] |
West, R., Jakubek, K., Wymbs, N., Perry, M., & Moore, K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167(1), 38-48.
doi: 10.1007/s00221-005-2366-y URL pmid: 16082533 |
[50] |
Zhang, Z. H., Han, M., Zhang, F., & Li, W.J. (2020). Musical training improves rhythm integrative processing of classical Chinese poem. Acta Psychologica Sinica, 52(7), 847-860.
doi: 10.3724/SP.J.1041.2020.00847 URL |
[51] |
Zuk, J., Benjamin, C., Kenyon, A., & Gaab, N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS One, 9(6), e99868.
URL pmid: 24937544 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||